RUS  ENG
Full version
JOURNALS // Trudy Geometricheskogo Seminara // Archive

Tr. Geom. Semin., 1997 Volume 23, Pages 187–198 (Mi kutgs17)

This article is cited in 1 paper

The space $H_4$ and quaternion algebra

A. P. Shirokov

Kazan State University

Abstract: We obtain a conformal model of the four-dimensional Lobachevskii space $H_4$ by an autopolar framing of a quadric in the projective space $P_5$. We use quaternions to describe points and vectors, this allows us to write the parallel translation law in terms of quaternions. In these terms we also represent infinitesimal motions and infinitesimal conformal transformations, and some finite transformations of $H_4$ as well.



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026