Abstract:
The emission characteristics of a pulsed-periodic UV radiation source are reported. The source excited by a pulsed-periodic capacitive discharge initiated in helium-iodine vapor, neon-iodine vapor, or krypton-iodine vapor mixtures radiates in the spectral range 200–450 nm. It is shown that most of the plasma radiation power concentrates in the integral line of the iodine atom (206.2 nm) and in the $D'$–$A'$ band of the iodine molecule with a maximum at 342 nm. The radiation intensity of the lamp is optimized in accordance with the partial pressure of the inert gases. The discharge plasma parameters that are of interest for simulating the process kinetics and the output characteristics of an UV source based on molecular iodine, atomic iodine, and xenon iodide are calculated in helium-iodine vapor and xenon-iodine vapor mixtures.