Abstract:
The steady motion of a nonuniformly heated spherical aerosol particle through a viscous gaseous medium is theoretically studied in the Stokes approximation. It is assumed that the mean temperature of the particle surface may differ appreciably from the ambient temperature. The solution of gasdynamic equations yields an analytical expression for the drag of the medium and the gravitational fall velocity of the nonuniformly heated spherical solid particle with allowance for the temperature dependence of the density of the medium and molecular transfer coefficients (viscosity and thermal conductivity). Numerical estimates show that heating of the particle surface considerably influences the drag force and gravitational fall velocity.