Abstract:
Fritting oscillations in a glasslike film of methane and chlorine rapidly attenuate. A change in the boundary condition makes them weakly damped, while dosed synchronized injections of vacancies with high-energy particles make it possible to obtain a self-oscillatory system. The mechanism of fritting oscillations is described in detail. An oscillating dissipative structure is formed in the active medium of nonequilibrium glass supersaturated with vacancies and exhibiting a liquid-like behavior. A capillary flow of the medium plays a special role in its evolution.