RUS  ENG
Full version
JOURNALS // Journal of Siberian Federal University. Mathematics & Physics // Archive

J. Sib. Fed. Univ. Math. Phys., 2021 Volume 14, Issue 3, Pages 287–300 (Mi jsfu914)

A note on the conjugacy between two critical circle maps

Utkir A. Safarovab

a Turin Politechnic University in Tashkent, Tashkent, Uzbekistan
b Tashkent State University of Economics,Tashkent, Uzbekistan

Abstract: We study a conjugacy between two critical circle homeomorphisms with irrational rotation number. Let $f_{i}, i=1,2$ be a $C^{3}$ circle homeomorphisms with critical point $x_{cr}^{(i)}$ of the order $2m_{i}+1$. We prove that if $2m_{1}+1 \neq 2m_{2}+1$, then conjugating between $f_{1}$ and $f_{2}$ is a singular function.

Keywords: circle homeomorphism, critical point, conjugating map, rotation number, singular function.

UDC: 517.9+519.1

Received: 10.11.2020
Received in revised form: 16.12.2020
Accepted: 04.02.2021

Language: English

DOI: 10.17516/1997-1397-2021-14-3-287-300



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026