RUS  ENG
Full version
JOURNALS // Journal of Siberian Federal University. Mathematics & Physics // Archive

J. Sib. Fed. Univ. Math. Phys., 2019 Volume 12, Issue 4, Pages 406–411 (Mi jsfu775)

Upper half-plane in the Grassmanian $Gr(n;2n)$

Simon Gindikin

Department of Mathematics, Hill Center, Rutgers University, 110 Frelinghysen Road, Piscataway, NJ 08854, U.S.A.

Abstract: We investigate the complex geometry of a multidimensional generalization $\mathcal{D}(n)$ of the upper-half-plane, which is homogeneous relative the group $G=SL(2n; \mathbb{R})$. For $n>1$ it is the pseudo Hermitian symmetric space which is the open orbit of $G=SL(2n; \mathbb{R})$ on the Grassmanian $Gr_\mathbb{C}(n;2n)$ of $n$-dimensional subspaces of $\mathbb{C}^{2n}$. The basic element of the construction is a canonical covering of $\mathcal{D}(n)$ by maximal Stein submanifolds — horospherical tubes.

Keywords: Grassmanian, pseudo Hermitian symmetric space, cycle, horosphere, horospherical tube.

UDC: 517.55

Received: 29.03.2019
Received in revised form: 05.05.2019
Accepted: 16.06.2019

Language: English

DOI: 10.17516/1997-1397-2019-12-4-406-411



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026