RUS  ENG
Full version
JOURNALS // Journal of Siberian Federal University. Mathematics & Physics // Archive

J. Sib. Fed. Univ. Math. Phys., 2017 Volume 10, Issue 1, Pages 128–131 (Mi jsfu532)

Zeros in partition function and critical behavior of disordered three dimensional Ising model

Andrey N. Vakilov

Omsk State University, Mira, 55a, Omsk, 644077, Russia

Abstract: We used a Monte Carlo simulation of the structurally disordered three dimensional Ising model. For the systems with spin concentrations $p = 0.95 , 0.8 , 0.6$ and $0.5$ we calculated the correlation-length critical exponent $\nu$ by finite-size scaling. Extrapolations to the thermodynamic limit yield $\nu(0.95) = 0.705(5),\, \nu(0.8) = 0.711(6),\, \nu(0.6) = 0.736(6)$ and $\nu(0.5) = 0.744(6)$. The analysis of the results demonstrates the nonuniversality of the critical behavior in the disordered Ising model.

Keywords: Monte Carlo simulation, complex temperature, critical exponents, disordered systems,zeroes of the partition function.

UDC: 539.2

Received: 10.08.2016
Received in revised form: 10.10.2016
Accepted: 14.11.2016

Language: English

DOI: 10.17516/1997-1397-2017-10-1-128-131



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026