RUS  ENG
Full version
JOURNALS // Journal of Siberian Federal University. Mathematics & Physics // Archive

J. Sib. Fed. Univ. Math. Phys., 2016 Volume 9, Issue 2, Pages 220–224 (Mi jsfu479)

This article is cited in 1 paper

Minimal algebras of unary multioperations

Nikolay A. Peryazeva, Yulia V. Peryazevab, Ivan K. Sharankhaevc

a Saint Petersburg Electrotechnical University, Professor Popov, 5, Saint Peterburg, 197376, Russia
b Gymnasium 24 of Saint Petersburg, Srednii Avenue, 20, Saint Peterburg, 199053, Russia
c Institute of Mathematics and Computer Science, Buryat State University Smolin, 24a, Ulan-Ude, 670000, Russia

Abstract: A matrix impression of algebras of unary multioperations of a finite rank and the list of the identities which are carried out in such algebras are gained. These results are used for the proof of the main result: descriptions of the minimal algebras of unary multioperations of a finite rank. As a result the list of all such minimal algebras for small ranks is received.

Keywords: multioperation, algebra, minimal algebra, matrix, operation, substitution.

UDC: 519.7

Received: 10.01.2016
Received in revised form: 17.02.2016
Accepted: 24.03.2016

Language: English

DOI: 10.17516/1997-1397-2016-9-2-220-224



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026