RUS  ENG
Full version
JOURNALS // Journal of Siberian Federal University. Mathematics & Physics // Archive

J. Sib. Fed. Univ. Math. Phys., 2010 Volume 3, Issue 4, Pages 544–555 (Mi jsfu153)

On the integrals over two-dimensional compact complex toric varieties

Olga S. Ulvert

Institute of Mathematics, Siberian Federal University, Krasnoyarsk, Russia

Abstract: In this paper, we proof that an integral of smooth $(2,2)$-form over two-dimensional compact complex toric variety $X$ (which contains complex torus $\mathbb T^2$) is equal to the integral of holomorphic $(2,0)$-form over real torus $T^2\subset\mathbb T^2$.

Keywords: differential form, toric variety, Dolbeault cohomology, Čech cohomology.

UDC: 515.171.6

Received: 18.05.2010
Received in revised form: 25.06.2010
Accepted: 10.07.2010



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026