RUS  ENG
Full version
JOURNALS // Journal of Siberian Federal University. Mathematics & Physics // Archive

J. Sib. Fed. Univ. Math. Phys., 2024 Volume 17, Issue 4, Pages 513–518 (Mi jsfu1182)

On the grothendieck duality for the space of holomorphic Sobolev functions

Arkadii B. Levskii, Alexander A. Shlapunov

Siberian Federal University, Krasnoyarsk, Russian Federation

Abstract: We describe the strong dual space $({\mathcal O}^s (D))^*$ for the space ${\mathcal O}^s (D) = H^s (D) \cap {\mathcal O} (D)$ of holomorphic functions from the Sobolev space $H^s(D)$, $s \in \mathbb Z$, over a bounded simply connected plane domain $D$ with infinitely differential boundary $\partial D$. We identify the dual space with the space of holomorhic functions on ${\mathbb C}^n\setminus \overline D$ that belong to $H^{1-s} (G\setminus \overline D)$ for any bounded domain $G$, containing the compact $\overline D$, and vanish at the infinity. As a corollary, we obtain a description of the strong dual space $({\mathcal O}_F (D))^*$ for the space ${\mathcal O}_F (D)$ of holomorphic functions of finite order of growth in $D$ (here, ${\mathcal O}_F (D)$ is endowed with the inductive limit topology with respect to the family of spaces ${\mathcal O}^s (D)$, $s \in \mathbb Z$). In this way we extend the classical Grothendieck–Köthe–Sebastião e Silva duality for the space of holomorphic functions.

Keywords: duality theorems, holomorphic functions of finite order of growth.

UDC: 517.53

Received: 10.03.2024
Received in revised form: 02.04.2024
Accepted: 10.05.2024

Language: English



© Steklov Math. Inst. of RAS, 2026