RUS  ENG
Full version
JOURNALS // Journal of Siberian Federal University. Mathematics & Physics // Archive

J. Sib. Fed. Univ. Math. Phys., 2023 Volume 16, Issue 1, Pages 135–141 (Mi jsfu1063)

Explicit formula for sums related to the generalized Bernoulli numbers

Brahim Mittouab

a Department of Mathematics, University Kasdi Merbah Ouargla, Algeria
b EDPNL & HM Laboratory of ENS Kouba, Algeria

Abstract: Let $\chi$ be a Dirichlet character modulo a prime number $p\geqslant 3$ and let $B_m(\chi)$ $(m=1,2,\ldots)$ be the generalized Bernoulli numbers associated with $\chi$. Explicit formulas for the sums:
$$\sum_{\substack{\chi\mod p\\\chi(-1)=+1, \chi\neq\chi_0}}B_{m}(\chi)B_{n}(\overline{\chi})\text{ and }\sum_{\substack{\chi\mod p\\ \chi(-1)=-1}}B_{m}(\chi)B_{n}(\overline{\chi})$$
are given in this paper.

Keywords: character sum, Dirichlet $L$-function, Bernoulli number, generalized Bernoulli number.

UDC: 511

Received: 10.07.2022
Received in revised form: 16.09.2022
Accepted: 04.11.2022

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026