RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Zh. Mat. Fiz. Anal. Geom., 2008 Volume 4, Number 1, Pages 33–62 (Mi jmag84)

This article is cited in 6 papers

Scattering theory for Jacobi operators with general step-like quasiperiodic background

I. Egorovaa, J. Michorbc, G. Teschlcd

a Mathematical Division, B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Lenin Ave., Kharkiv, 61103, Ukraine
b Imperial College, 180 Queen's Gate, London SW7 2BZ, UK
c International Erwin Schrödinger Institute for Mathematical Physics, Boltzmanngasse 9, 1090 Wien, Austria
d Faculty of Mathematics, Nordbergstrasse 15, 1090 Wien, Austria

Abstract: We develop direct and inverse scattering theory for Jacobi operators with step-like coeffscients which are asymptotically close to different finite-gap quasiperiodic coefficients on different sides. We give a complete characterization of the scattering data, which allow unique solvability of the inverse scattering problem in the class of perturbations with finite first moment.

Key words and phrases: inverse scattering, Jacobi operators, quasiperiodic, step-like.

MSC: Primary 47B36, 81U40; Secondary 34L25, 39A11

Received: 17.09.2007

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026