RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Zh. Mat. Fiz. Anal. Geom., 2019 Volume 15, Number 2, Pages 239–255 (Mi jmag725)

This article is cited in 10 papers

Translation-invariant Gibbs measures for the Blum–Kapel model on a Cayley tree

Nosir Khatamov, Rustam Khakimov

Namangan State University, 316 Uychi Str., 160119, Namangan, Uzbekistan

Abstract: In the paper, translation-invariant Gibbs measures for the Blum–Kapel model on a Cayley tree of order $k$ are considered. An approximate critical temperature $T_{cr}$ is found such that for $T\geq T_{cr}$ there exists a unique translation-invariant Gibbs measure and for $0<T<T_{cr}$ there are exactly three translation-invariant Gibbs measures. In addition, the problem of (not) extremality for the unique Gibbs measure is studied.

Key words and phrases: Cayley tree, configuration, Blum–Kapel model, Gibbs measure, translation-invariant measure, extremality of measure.

MSC: 82B26, 60K35.

Received: 26.07.2017
Revised: 14.09.2018

Language: English

DOI: 10.15407/mag15.02.239



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026