RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Mat. Fiz. Anal. Geom., 1995 Volume 2, Number 3, Pages 384–398 (Mi jmag641)

This article is cited in 4 papers

Quantum cohomology of complete intersections

Arnaud Beauville

URA 752 du CNRS, Mathématiques – Bât. 425, Université Paris-Sud, 91 405 Orsay Cedex, France

Abstract: The quantum cohomology algebra of a projective manifold $X$ is the cohomology $H^*(X,\mathbf Q)$ endowed with a different algebra structure, which takes into account the geometry of rational curves in $X$. We show that this algebra takes a remarkably simple form for complete intersections when the dimension is large enough with respect to the degree. As a consequence we get a number of enumerative formulas relating lines, conies and twisted cubics on $X$.

UDC: 512.7

Received: 20.03.1994

Language: English



© Steklov Math. Inst. of RAS, 2026