RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Zh. Mat. Fiz. Anal. Geom., 2015 Volume 11, Number 2, Pages 159–173 (Mi jmag614)

This article is cited in 9 papers

Properties of Modified Riemannian Extensions

A. Gezera, L. Bilenb, A. Cakmaka

a Ataturk University, Faculty of Science, Department of Mathematics, 25240, Erzurum-Turkey
b Igdir University, Igdir Vocational School, 76000, Igdir-Turkey

Abstract: Let $M$ be an $n$-dimensional differentiable manifold with a symmetric connection $\nabla $ and $T^{\ast }M$ be its cotangent bundle. In this paper, we study some properties of the modified Riemannian extension $\widetilde{g}_{\nabla ,c}$ on $T^{\ast }M$ defined by means of a symmetric $(0,2)$-tensor field $c$ on $M.$ We get the conditions under which $T^{\ast }M $ endowed with the horizontal lift $^{H}J$ of an almost complex structure $J$ and with the metric $\widetilde{g}_{\nabla ,c}$ is a Kähler–Norden manifold. Also curvature properties of the Levi–Civita connection of the metric $\widetilde{g}_{\nabla ,c}$ are presented.

Key words and phrases: cotangent bundle, Kähler–Norden manifold, modified Riemannian extension, Riemannian curvature tensors, semi-symmetric manifold.

MSC: 53C07, 53C55, 53C35

Received: 21.01.2014
Revised: 16.12.2014

Language: English

DOI: 10.15407/mag11.02.159



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026