RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Zh. Mat. Fiz. Anal. Geom., 2014 Volume 10, Number 3, Pages 309–319 (Mi jmag596)

Refinement of Isoperimetric Inequality of Minkowski with the Account of Singularities in Boundaries of Intrinsic Parallel Bodies

V. I. Diskant

Cherkasy State Technologic University, 460 Shevchenko Blvd., Cherkasy 18006, Ukraine

Abstract: The following inequalities are proved:
\begin{eqnarray*} S^n(A,B)\geq n^n\sum\limits_{i=0}^{k-1} V(B_{A_i})\left( V^{n-1}(A_i) - V^{n-1}(A_{i+1}) \right) +S^n(A_{-T}(B),B), \end{eqnarray*}

\begin{eqnarray*} S^n(A,B)\geq n^n\int\limits_{0}^{T} g(t) df(t) +S^n(A_{-T}(B),B), \end{eqnarray*}

\begin{eqnarray*} S^n(A,B)\geq n^n\int\limits_{0}^{q} g(t) df(t) +S^n(A_{-q}(B),B), \end{eqnarray*}
where $V(A)$, $V(B)$ stand for the volumes of convex bodies $A$ and $B$ in $\mathbb R^n$ ($n\geq 2$), $S(A,B)$ denotes the area of the surface of the body $A$ relative to the body $B$, $q$ is the capacity factor of the body $B$ with respect to the body $A$, $A_i = A_{-t_i}(B) = A / (t_iB)$ is the inner body parallel to the body $A$ with respect to the body $B$ at a distance $t_i$, $0=t_0 < t_1 <\ldots< t_i< \ldots < t_{k-1}<t_k=T<q$, $B_{A_i}$ is a shape body of $A_i$ relative to $B$, $g(t) = V(B_{A_{-t}(B)})$, $f(t) = - V^{n-1}( A_{-t}(B))$, $\int\limits_{0}^{T} g(t) df(t) $ is the Riemann–Stieltjes integral of the function $g(t)$ by the function $f(t)$, and $\int\limits_{0}^{q} g(t) df(t) = \lim\limits_{T\to q} \int\limits_{0}^{T} g(t) df(t)$.

Key words and phrases: convex body, isoperimetric inequality, Minkowski inequality.

MSC: 53B50

Received: 14.05.2013
Revised: 23.12.2013

Language: English

DOI: 10.15407/mag10.03.309



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026