RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Zh. Mat. Fiz. Anal. Geom., 2014 Volume 10, Number 1, Pages 44–63 (Mi jmag583)

This article is cited in 3 papers

On Spectrum of Differential Operator with Block-Triangular Matrix Coefficients

A. M. Kholkina, F. S. Rofe-Beketovb

a Pryazovskyi State Technical University, 7 Universitets'ka Str., Mariupol 87500, Ukraine
b B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Lenin Ave., Kharkiv, 61103, Ukraine

Abstract: For the Sturm–Louville equation with block-triangular matrix potential that increases at infinity, both increasing and decreasing at infinity matrix solutions are found. The structure of spectrum for the differential operator with these coefficients is defined.

Key words and phrases: differential operator, spectrum, block-triangular matrix coefficients.

MSC: 34K11, 47A10

Received: 05.11.2012
Revised: 15.07.2013

Language: English

DOI: 10.15407/mag10.01.044



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026