RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Zh. Mat. Fiz. Anal. Geom., 2012 Volume 8, Number 4, Pages 336–356 (Mi jmag541)

Homogenization of spectral problem on small-periodic networks

A. S. Krylova, G. V. Sandrakov

Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str., Kyiv, 01601 Ukraine

Abstract: The homogenization of a spectral problem on small-periodic networks with periodic boundary conditions is considered. Asymptotic expansions for eigenfunctions and corresponding eigenvalues on the network are constructed. The theorem is proved which is a justification of the asymptotic expansions for some eigenvalues and eigenfunctions of the problem on the network.

Key words and phrases: homogenization, spectral problem, small-periodic network, string cross.

MSC: 35B27, 34L20, 35B40

Received: 13.06.2012
Revised: 13.08.2012

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026