RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Zh. Mat. Fiz. Anal. Geom., 2011 Volume 7, Number 2, Pages 158–175 (Mi jmag510)

This article is cited in 1 paper

On stability of a unit ball in Minkowski space with respect to self-area

A. I. Shcherba

Cherkasy State Technological University, 460 Shevchenko Blvd., Cherkassy, 18006, Ukraine

Abstract: The main results of the paper are the following two statements. If the length of the unit circle $\partial B=\{\|x\|=1\}$ on Minkowski plane $M^2$ is equal to $O(B)=8(1-\varepsilon)$, $0\le\varepsilon\le 0.04$, then there exists a parallelogram which is centrally symmetric with respect to the origin $o$ and the sides of which lie inside an annulus $(1+18\varepsilon)^{-1}\le\|x\|\le 1$. If the area of the unit sphere $\partial B$ in the Minkowski space $M^n$, $n\ge 3$, is equal to $O(B)=2n\cdot\omega_{n-1}\cdot (1-\varepsilon)$, where $\varepsilon$ is a sufficiently small nonnegative constant and $\omega_n$ is a volume of the unit ball in $R^n$, then in the globular layer $(1+\varepsilon^\delta)^{-1}\le\|x\|\le 1$, $\delta=2^{-n}\cdot(n!)^{-2}$ it is possible to place a parallelepiped symmetric with respect the origin $o$.

Key words and phrases: Minkowski space, self-perimeter, self-area, stability.

MSC: 52A38, 52A40

Received: 23.02.2010

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026