RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Mat. Fiz. Anal. Geom., 1996 Volume 3, Number 3/4, Pages 423–445 (Mi jmag506)

On power serves with Gelfond–Leontev derivatives satisfying a special condition

M. N. Sheremeta

Ivan Franko State University of L'viv

Abstract: Necessary and sufficient conditions on a function $l$ and an increasing sequence $(n_p)$ of non-negative integers are found in order that $f$ be an entire function whenever for all $p\in z_+$ the Gelfond–Leontev derivative $D_l^{n_p}f$ belongs to the class $A_\lambda(0)$, where the class $A_\lambda(0)$ consists of all functions $g(z)=\sum_{k=0}^\infty g_k(z^k)$ such that $|g_k|\le\lambda_k|g_1|$ ($k\geq1$) and $\lambda=(\lambda_k)$ is a sequence of positive numbers.

Received: 13.06.1994



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026