RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Mat. Fiz. Anal. Geom., 1996 Volume 3, Number 1/2, Pages 102–117 (Mi jmag485)

On complete convex solutions of the equation $\operatorname{spur}_m(z_{ij})=1$

V. N. Kokarev

Samara State University

Abstract: Let designation $\operatorname{spur}_m(z_{ij})=1$ stand for the sum of all principal $m$-order minors of matrix $(z_{ij})$, consisting of second derivatives of the function $z(x^1,\dots,x^n)$. Any complete convex class $C^{2\alpha}$ solution of the equation $\operatorname{spur}_m(z_{ij})=1$, ($2\le m<n$), will be a quadratic polynomial if the matrix $(z_{ij})$ eigenvalues are sufficiently close to each other.

Received: 25.01.1995



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026