RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Mat. Fiz. Anal. Geom., 1996 Volume 3, Number 1/2, Pages 27–33 (Mi jmag479)

Weakly connected systems of Monge–Amper elliptic equations and the problem of existence of $2$-surface in $E^{k+2}$ with given Killing–Lipschitz curvatures with respect to $k$ normal vectors

B. E. Kantor, V. M. Vereshchagin

Murmansk State Pedagogical University

Abstract: A surface $z^i=u^i(x,y)$, $i=1,\dots,k$, projected regularly onto a domain $\Omega$ of the $(x,y)$-plane is considered in a $(k+2)$-dimensional Euclidean space. We introduce natural unit vectors $\xi_i$ directed along the vectors $(u^i_x,u^i_y,0,\dots,0,-1,0,\dots)$, $i=1,\dots,k$, where $-1$ is in the $(2+i)$-coordinate place, and the Killing–Lipschitz curvatures $K^i (x, y)$ with respect to these normal vectors. The problem of construction of a surface with given positive functions $K^i(x,y)$ and a given boundary value $u^i|_{\partial\Omega}=\varphi^i(\sigma)$, where $\sigma$ is the parameter in the curve $\partial\Omega$, is solved.

Received: 09.06.1994



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026