RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Mat. Fiz. Anal. Geom., 1997 Volume 4, Number 4, Pages 407–427 (Mi jmag469)

A geometric approach to dynamic feedback design

V. Y. Belozerov

Dnepropetrovsk State University

Abstract: Let dimensions of a spaces states $n$, inputs $m$, and outputs $p$ of a generic linear control system and also integer $l>0$ satisfy the restriction $n<mp+l(m+p\operatorname{min}(m,p))$. An algorithm dynamic compensator design of degree $l$ is suggested. It is shown if $n<mp$ a minimal order $l_{\operatorname{min}}$ of the compensator being assumed the control system is determined by correlation $(1+(n,mp)/(m+p,1)>l_{\operatorname{min}}(n,mp)/(m+p,1)$ (in case $n<mp$, $l_{\operatorname{min}}=0$). Besides, for the control systems with two inputs or putputs, the procedure completely solving the compensators design problem of the first and, partially, the second powers is elaborated. An example is given.

Received: 25.09.1995
Revised: 14.06.1996



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026