RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Mat. Fiz. Anal. Geom., 1997 Volume 4, Number 3, Pages 334–338 (Mi jmag464)

Stability of isodiametric problem solution in the Minkowski geometry

V. I. Diskant

Cherkasy State Technological University

Abstract: The theorem is proved: if $(D_B(X)/2)^n-V_B(X)/V_B(B_1)\le\varepsilon$, $0\le\varepsilon$, $V_B(X)=V_B(B_1)$, then $\delta_B(X,B_1)\le2\varepsilon^{1/n}$, where $X$ – convex body in $n$-dimensional space of Minkowski $\tilde M^n$, $B$ – normed body $\tilde M^n$, $B_1=B\cap(-B)$, $V_B(X)$ – diameter $X$, $V_B(X)$ – volume $X$, $\delta_B(X,B_1)$ – deflection of bodies $X$ and $B_1$ in $\tilde M^n$.

Received: 23.02.1994



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026