RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Mat. Fiz. Anal. Geom., 1997 Volume 4, Number 1/2, Pages 133–144 (Mi jmag452)

Bianchi–Li–Backlund transformation in spaces of constant curvature $H^3(-1)$ and $S^3(1)$

L. A. Masal'tsev

Kharkiv State University

Abstract: Bianchi–Lie–Backlund transformation in space forms $H^3(-1)$ (Poincare model of Lobachevsky space at the upper half-plane) and $S^3(1)$ (spherical space with the Riemann metric) are considered. The conditions defining the transformation in global coordinates and the corresponding differential equations of surfaces of constant external curvature are derived.

Received: 28.08.1995



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026