RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Mat. Fiz. Anal. Geom., 1997 Volume 4, Number 1/2, Pages 65–74 (Mi jmag447)

This article is cited in 1 paper

On the classification of Lagrangian subalgebras in $\mathfrak{g}\times\mathfrak{g}$, where $\mathfrak{g}$ is a complex reductive Lie algebra

E. A. Karolinsky

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Khar'kov

Abstract: An inductive approach to the classification of Lagrangian subalgebras in $\mathfrak{g}\times\mathfrak{g}$ up to the diagonal $\operatorname{Int}\mathfrak{g}$-action is proposed. Using this approach, the classification of Lagrangian subalgebras in $\mathfrak{g}\times\mathfrak{g}$, where $\mathfrak{g}=sl(n)$, $n\leq4$, is obtained.

Received: 18.12.1996



© Steklov Math. Inst. of RAS, 2026