RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Mat. Fiz. Anal. Geom., 1998 Volume 5, Number 3/4, Pages 212–227 (Mi jmag438)

This article is cited in 9 papers

An analogue of the second main theorem for uniform metric

I. I. Marchenko

Kharkiv State University

Abstract: Let $f$ be a meromorphic function of finite lower order $\lambda$, and order $\rho$, $T(r,f)$ be Nevanlinna's characteristic, $0<\gamma<\infty$, $B(\gamma)$ be Paley's constant. We obtain the estimates for upper and lower logarithmic density of set
$$ E(\gamma)=\{r:\sum\limits_{k=1}^{q}\log^{+}\max\limits_{|z|=r}|f(z)-a_k|^{-1}<2B(\gamma)T(r,f)\}. $$
It is shown that
$$ \overline{log dens}E(\gamma)\ge 1-\frac{\lambda}{\gamma}, \quad \underline{log dens}E(\gamma) \ge 1-\frac{\rho}{\gamma}\,. $$


Received: 30.06.1998



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026