aМатематическое отделение, Физико-технический институт низких температур им. Б.И. Веркина НАН Украины, пр. Ленина 47, Харьков, 61164, Укаина
Abstract:
We study the probability measures on the unit circle and the multiplication operators acting on appropriate $L^2$ spaces. When such a measure does not satisfy the Szegő condition, orthonormal polynomials form an orthonormal basis in this Hilbert space. The multiplication operator can be represented by an upper Hessenberg matrix. The main result concerns certain infinite-dimensional perturbations of the “constant” Hessenberg matrix which have a finite number of eigenvalues off the essential spectrum.