RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Mat. Fiz. Anal. Geom., 2000 Volume 7, Number 1, Pages 3–34 (Mi jmag391)

This article is cited in 6 papers

Operator theoretic approach to orthogonal polynomials on an arc of the unit circle

Л.Б. Голинскийa, Leonid Golinskii

a Математическое отделение, Физико-технический институт низких температур им. Б.И. Веркина НАН Украины, пр. Ленина 47, Харьков, 61164, Укаина

Abstract: We study the probability measures on the unit circle and the multiplication operators acting on appropriate $L^2$ spaces. When such a measure does not satisfy the Szegő condition, orthonormal polynomials form an orthonormal basis in this Hilbert space. The multiplication operator can be represented by an upper Hessenberg matrix. The main result concerns certain infinite-dimensional perturbations of the “constant” Hessenberg matrix which have a finite number of eigenvalues off the essential spectrum.

MSC: 42C05, 47B15

Received: 06.04.1998

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026