RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Mat. Fiz. Anal. Geom., 2000 Volume 7, Number 3, Pages 299–307 (Mi jmag378)

On complex strictly convex complexifications of Banach spaces

V. M. Kadets, A. Yu. Kellerman

V. N. Karazin Kharkiv National University

Abstract: We show that every real separable normed space may be complexified to a complex strictly convex normed space. The same result is obtained also for some classes of nonseparable spases, for example, for spases $X$ with 1-norming separable subspases in $X^*$; however, a space $\ell_\infty(\Gamma)$ has no complex strictly convex complexifications.

Received: 06.07.1999



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026