RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Mat. Fiz. Anal. Geom., 2002 Volume 9, Number 4, Pages 642–647 (Mi jmag321)

On the growth of meromorphic functions

I. I. Marchenkoab

a University of Szczecin, Institute of Mathematics, 15 Wielkopolska Str., Szczecin, 70451, Poland
b Department of Mechanics and Mathematics, V. N. Karazin Kharkov National University, 4 Svobody Sq., Kharkov, 61077, Ukraine

Abstract: We obtained the estimates for upper and lower logarithmic density of the set $A(\gamma)=\Bigl\{r:\sum\limits_{k=1}^q\mathcal L(r,a_k,f)<2B(\gamma,\Delta(0,f'))T(r,f)\Bigr\}$, where $B(\gamma,\Delta)$ is Shea's constant, $\Delta(0,f')$ is Valiron's deficiency of the derivative of the function $f$ at zero.

MSC: 30D30, 30D35

Received: 17.10.2002

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026