RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Mat. Fiz. Anal. Geom., 2003 Volume 10, Number 2, Pages 147–155 (Mi jmag240)

Improvements of the isoperimetric inequality geometry of the Minkowski

V. I. Diskant

Cherkasy State Technological University

Abstract: The following improvements of an isoperimetric inequality in the $n$-dimensional Minkowski space $M^n$ ($n\geq 2$) with a normalizing body $B$ [3]:
\begin{gather*} S^{\frac{n}{n-1}}_B(A) - (n^nV_B(I))^{\frac{1}{n-1}} V_B(A) \geq (S^{\frac{1}{n-1}}_B(A)-\rho(nV_B(I))^{\frac{1}{n-1}})^n -(n^nV_B(I))^{\frac{1}{n-1}}V_B(A_{-\rho }(I)), \\ S^{\frac{n}{n-1}}_B(A) - (n^nV_B(I_A))^{\frac{1}{n-1}} V_B(A) \geq (S^{\frac{1}{n-1}}_B(A)-\rho(nV_B(I_A))^{\frac{1}{n-1}})^n-(n^nV_B(I_A))^{\frac{1}{n-1}}V_B(A_{-\rho }(I)) \end{gather*}
and series of their consequents, among which one improvement (11) of an isoperimetric inequality in $M^n$, taking into account both singularities on boundary of a body $A$, and deviation of body $A$ and $I_A$ from homothetic, improvement (13) an inequality of Hadwiger from [5] in $M^n$ in view of a nondegeneracy $A_{-q}(I)$, generalizing (15) of an inequality of Wills from [7] on $M^n$ are proved. In reduced inequalities $A$ — convex body, $I$ — isoperimetrix, $I_A$ — form-body of body $A$ relatively to $I$, $q$ — coefficient of holding capacity $I$ in $A$, $\rho\in [0,q]$, $A_{-\rho}(I)$ — internal body which is parallel to body $A$ relatively to $I$ on the distance $\rho$, $V_B(A)$ — the volume of body $A$, $S_B(A)$ — the surface area of body $A$ in $M^n$ [3].

MSC: 52A38, 52A40

Received: 17.05.2002



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026