RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Mat. Fiz. Anal. Geom., 2003 Volume 10, Number 1, Pages 94–105 (Mi jmag234)

On variation preserving operators

Tetyana Lobova

Department of Mechanics and Mathematics, V. N. Karazin Kharkov National University, 4 Svobody Sq., Kharkov, 61077, Ukraine

Abstract: For a piecewise-continuous function $f$ on $[0,1]$ we denote by $\nu(f)$ the number of its sign changes. By $K_n[0,1]$ we denote the set of piecewise-continuous functions $f$ on $[0,1]$ such that $\nu(f)\le n$. We prove that for any $n\ge 2$ there are no integral transforms $\tilde{K}f(x)=\int_0^1 K(x,y)f(y)\,dy$ with a continuous kernel $K(x,y)$ such that $\nu(\tilde {K}f)=\nu(f)$, for every $f\in K_n[0,1]$. We give an example of a continuous kernel $K(x,y)$ such that $\nu(\tilde{K}f)=\nu(f)$, for every $f\in K_1[0,1]$.

MSC: 44A15, 47A50, 47A99

Received: 28.11.2001

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026