RUS  ENG
Full version
JOURNALS // Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry] // Archive

Mat. Fiz. Anal. Geom., 2004 Volume 11, Number 4, Pages 470–483 (Mi jmag221)

On conditionally convergent series

Vladimir Logvinenko

Mathematics Department, De Anza College, 21250 Stevens Creek Blvd., Cupertino, Ca 95014-5793, US

Abstract: The most interesting result of the paper is that for any two complementary subsets $A$ and $B$ of the set of positive odd integers there exists such a sequence $\{\alpha_k\}_{k=1}^\infty\subset[-1,1]$ that
\begin{gather*} \forall\,m\in A:\text{ the series }\sum_{k=1}^\infty\alpha_k^m\text{ is convergent and} \\ \forall\,m\in B:\text{ the series }\sum_{k=1}^\infty\alpha_k^m\text{ is divergent.} \end{gather*}
Using the map $\overrightarrow{x}\longmapsto\|\overrightarrow{x}\|^{\lambda}\frac{\overrightarrow{x}}{\|\overrightarrow{x}\|}$ as a substitute of the power function, one can prove similar results for vectors and positive not necessarily integer exponents $\lambda$.

MSC: 40A05

Received: 23.09.2004

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026