RUS  ENG
Full version
JOURNALS // Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki // Archive

Pis'ma v Zh. Èksper. Teoret. Fiz., 2025 Volume 122, Issue 3, Pages 162–164 (Mi jetpl7567)

CONDENSED MATTER

Effect of Coulomb correlations on the electronic structure of bulk V$_{2}$Se$_{2}$O: a DFT + DMFT study

I. O. Trifonova, S. L. Skornyakovba, V. I. Anisimovba

a M.N.Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, 620108 Yekaterinburg, Russia
b Ural Federal University, 620062 Yekaterinburg, Russia

Abstract: We present results of density functional theory (DFT) plus dynamical mean-field theory (DFT + DMFT) calculations of the electronic structure of bulk paramagnetic V$_{2}$Se$_{2}$O. We show that local Coulomb correlations in the partially filled V $3d$ shells induce renormalizations of the DFT spectral functions close to the Fermi energy preserving their shape. These transformations are not accompanied by a spectral weight transfer to Hubbard bands, indicating a moderately correlated metallic state of bulk paramagnetic V$_{2}$Se$_{2}$O. The V $3d$ states exhibit a quasiparticle mass enhancement $m^*/m\sim1.34-3.11$ comparable to that in the isostructural compound V$_{2}$Te$_{2}$O. We demonstrate that orbital selectivity of correlation effects in V$_{2}$Se$_{2}$O is less pronounced compared to V$_{2}$Te$_{2}$O as can be traced from the weaker differentiation of $m^*/m$ and local spin correlation functions for different V $3d$ orbitals. The analysis of the temperature dependence of the self-energy allows us to speculate on possible deviations from the Fermi-liquid behavior of V$_{2}$Se$_{2}$O.

Received: 02.06.2025
Revised: 26.06.2025
Accepted: 28.06.2025

Language: English

DOI: 10.31857/S0370274X25080078



© Steklov Math. Inst. of RAS, 2026