Abstract:
The reduction of the area of the cross section of a spin-valve-like structure to a nanoscale is an important problem of modern spin electronics. However, the transverse quantization of electronic states in the spin valve, which forms a magnetic nanobridge at this scale, additionally affects not only the magnetoresistance but also the spin-transfer torques. In this work, features of the quantization of the magnetoresistance and spin-angular momentum associated with the spin transfer in a Co/Au/Co metallic nanobridge with metallic contacts have been theoretically analyzed. It has been shown that these features are manifested in oscillations of the microwave sensitivity of a spin-torque diode based on the spin-valve structure mentioned above.