RUS  ENG
Full version
JOURNALS // Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki // Archive

Pis'ma v Zh. Èksper. Teoret. Fiz., 2015 Volume 102, Issue 11, Pages 864–869 (Mi jetpl4808)

This article is cited in 7 papers

CONDENSED MATTER

Spin Hall conductivity in three-dimensional topological insulator/normal insulator heterostructures

V. N. Men'shovab, V. V. Tugushevcba, E. V. Chulkovdebfg

a National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
b Tomsk State University, 634050 Tomsk, Russia
c Prokhorov General Physics Institute of the RAS, 119991 Moscow, Russia
d Centro de Física de Materiales CFM-MPC, 20080 San Sebastián, Basque Country, Spain
e St. Petersburg State University, 198504 St. Petersburg, Russia
f Centro Mixto CSIC-UPV/EHU, 20080 San Sebastián, Basque Country, Spain
g Departamento de Física de Materiales, Facultad de Químicas, UPV/EHU, 20080 San Sebastián, Basque Country, Spain

Abstract: In the framework of an effective functional approach based on the $\mathbf{k}\cdot\mathbf{p}$ method, we study the combined effect of an interface potential and a thickness of a three-dimensional (3D) topological insulator (TI) thin film on the spin Hall conductivity in layered heterostructures comprising TI and normal insulator (NI) materials. We derive an effective two-dimensional (2D) Hamiltonian of a 3D TI thin film sandwiched between two NI slabs and define the applicability limits of approximations used. The energy gap and mass dispersion in the 2D Hamiltonian, originated from the hybridization between TI/NI interfacial bound electron states at the opposite boundaries of a TI film, are demonstrated to change sign with the TI film thickness and the interface potential strength. Finally, we argue that the spin Hall conductivity can efficiently be tuned varying the interface potential characteristics and TI film thickness.

Received: 14.10.2015
Revised: 27.10.2015

Language: English

DOI: 10.7868/S0370274X15230113


 English version:
Journal of Experimental and Theoretical Physics Letters, 2015, 102:11, 754–759

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026