Abstract:
Weak localization in a system of gapless two-dimensional Dirac fermions in HgTe quantum wells with thickness $d = 6.6$ nm, which corresponds to the transition from a normal to an inverted spectrum, has been investigated experimentally. A negative logarithmic correction to the conductivity of the system has been observed both at the Dirac point and in the vicinity of this point. The anomalous magnetoresistance of two-dimensional Dirac fermions is positive. This indicates that weak localization in the system of two-dimensional Dirac fermions occurs owing to localization and interaction effects in the presence of rapid spin relaxation.