Abstract:
Signs of quantum chaos in the spectra of linear Hamiltonian systems including scattering billiards of various configurations with kinks of the lateral surface have been experimentally studied. A billiard with kinks of the lateral surface at which the second derivative is indefinite constitutes a scattering K system. As a result, the spectrum of such a billiard and the corresponding model resonator becomes chaotic and the distribution of spectral intervals is close to a Wigner distribution. The spectral rigidity curves have been measured for a model microwave cavity whose shape is similar to the scattering billiard with kinks of the lateral surface. It has been found that the characteristics of the chaotic spectrum, the distribution of the spectral intervals, and the spectral rigidity curves for billiards with kinks of the lateral boundary exhibit signs of quantum chaos.