RUS  ENG
Full version
JOURNALS // Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki // Archive

Pis'ma v Zh. Èksper. Teoret. Fiz., 2002 Volume 76, Issue 7, Pages 488–492 (Mi jetpl2938)

This article is cited in 15 papers

FIELDS, PARTICLES, AND NUCLEI

Nontrivial class of composite $U(\sigma+\mu)$ vector solitons

A. M. Agalarova, R. M. Magomedmirzaevb

a M. V. Lomonosov Moscow State University
b Institute of Physics, Daghestan Scientific Centre, Russian Academy of Sciences

Abstract: A mixed problem for the compact $U(m)$ vector nonlinear Schrödinger model with an arbitrary sign of coupling constant is exactly solved. It is shown that a new class of solutions—composite $U(\sigma+\mu)$ vector solitons with inelastic interaction (changing shape without energy loss) at $\sigma>1$ and strictly elastic interaction at $\sigma=1$— exists for $m\geq3$. These solitons are color structures consisting of $\sigma$ bright and $\mu$ dark solitons ($\sigma+\mu=m$) and capable of existing in both self-focusing and defocusing media. The $N$-soliton formula universal for attraction and repulsion is derived by the Hirota method.

PACS: 03.50.-z, 42.65.-k

Received: 05.07.2002
Revised: 12.09.2002


 English version:
Journal of Experimental and Theoretical Physics Letters, 2002, 76:7, 414–418

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026