Abstract:
Electron paramagnetic resonance (EPR) in diamond single crystals was studied. The crystals were grown using apparatuses of the “split-sphere” type in a Ni–Fe–C system using the temperature gradient method with a subsequent high-temperature high-pressure treatment. It was found that, after the high-temperature high-pressure treatment of a diamond sample, the EPR signal from the lattice defects containing nitrogen atoms became inverted with the growth of the microwave power in an $H_{102}$ resonator. In a constant polarizing magnetic field, when the microwave power applied to the diamond was low, a resonance absorption by the nitrogen defects took place, whereas, when the microwave power was high, an emission was observed. The inversion of the EPR lines of a single nitrogen atom substituting for a carbon atom at a diamond lattice site could be caused by the presence of a nickel atom with an uncompensated magnetic moment at the adjacent tetrahedral interstitial site. In synthetic diamond crystals that were not subjected to high-temperature high-pressure treatment, the inversion of the EPR signal from nitrogen atoms (P1 centers, nitrogen in the C form) was absent.