Abstract:
experimental and ab initio investigations of the effect of a decrease in the binding energy of surface arsenic atoms under the cesium adsorption on an As-stabilized GaAs(001)-(2$\times$4) surface have been performed. The cesium-induced redistribution of the charge on the surface atoms reduces the electron density in the As-Ga bond of the upper layer of the GaAs(001) surface; thus, the As-Ga binding energy decreases and, as a result, the diffusion activation energy, as well as the arsenic atom desorption, decreases. An increase in the diffusion coefficient of surface atoms, along with the property of Cs to segregate on the surface of a growing semiconductor film, makes it possible to use cesium as a surfactant in the low-temperature growth of GaAs by molecular beam epitaxy.