RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2024 Number 6, Pages 37–48 (Mi ivm9988)

A problem with analogue of the Frankl and mixing conditions for the Gellerstedt equation with singular coefficient

D. M. Mirsaburova

Termez State University, 43 Barkamol avlod str., Termez, 190111, Republic of Uzbekistan

Abstract: For the equation $ ({\rm sign} y)|y|^{m}u_{xx}+u_{yy}+\alpha_{_{0}}|y|^{(m-2)/2}u_{x}+(\beta_{0}/y)u_{y}=0, $, considered in some unbounded mixed domain, uniqueness and existence theorems for a solution to the problem with the missing shift condition on the boundary characteristics and an analogue of the Frankl type condition on the interval of degeneracy of the equation are proved.

Keywords: unbounded domain, missing shift condition, analogue of the Frankl condition, non-Fredholm operator, isolated first-order singularity, singular integral equation, Wiener–Hopf equation, index, unique solvability.

UDC: 517.956

Received: 10.05.2023
Revised: 25.09.2023
Accepted: 26.12.2023

DOI: 10.26907/0021-3446-2024-6-37-48


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2024, 68:6, 30–41


© Steklov Math. Inst. of RAS, 2026