RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2024 Number 6, Pages 27–36 (Mi ivm9987)

On the best approximation of analytic in a disk functions in the weighted Bergman space $\mathscr{B}_{2,\mu}$

M. R. Langarshoev

Civil Defence Academy of EMERCOM of Russia, 1 A Sokolovskaya str., micr. Novogorsc, Khimki, Moscow region, 141435 Russia

Abstract: We obtain sharp inequalities between the best approximations of analytic in the unit disk functions by algebraic complex polynomials and the moduli of continuity of higher-order derivatives in the Bergman weighted space $\mathscr{B}_{2,\mu}$. Based on these inequalities, the exact values of some known $n$-widths of classes of analytic in the unit disk functions are calculated.

Keywords: best polynomial approximation, $m$th order modulus of continuity, Bergman weighted space, width.

UDC: 517.5

Received: 13.04.2023
Revised: 21.06.2023
Accepted: 26.09.2023

DOI: 10.26907/0021-3446-2024-6-27-36


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2024, 68:6, 21–29


© Steklov Math. Inst. of RAS, 2026