RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2024 Number 1, Pages 3–13 (Mi ivm9946)

This article is cited in 1 paper

An estimate for the sum of a Dirichlet series on an arc of bounded slope

T. I. Belousa, A. M. Gaisinb, R. A. Gaisinb

a Ufa University of Science and Technology, 32 Zaky Validy str., Ufa, 450076 Russia
b Institute of Mathematics with Computing Centre – Subdivision of the Ufa Federal Research Centre of Russian Academy of Science, 112 Chernyshevsky str., Ufa, 450008 Russia

Abstract: The article considers the behavior of the sum of the Dirichlet series $F(s)=\displaystyle \sum\limits_{n} a_ne^{\lambda_ns},$ $0<\lambda_{n}\uparrow\infty, $ which converges absolutely in the left half-plane $\Pi_0$, on a curve arbitrarily approaching the imaginary axis — the boundary of this half-plane. We have obtained a solution to the following problem: Under what additional conditions on $\gamma$ will the strengthened asymptotic relation be valid in the case when the argument $s$ tends to the imaginary axis along $\gamma$ over a sufficiently massive set.

Keywords: Dirichlet series, lacunary power series, maximal term, curve of bounded slope, convergence half-plane.

UDC: 517.53

Received: 23.12.2022
Revised: 06.02.2023
Accepted: 29.03.2023

DOI: 10.26907/0021-3446-2024-1-3-13


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2024, 68:1, 1–10


© Steklov Math. Inst. of RAS, 2026