RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2022 Number 9, Pages 70–82 (Mi ivm9813)

This article is cited in 7 papers

A problem with displacement on internal characteristics in an unbounded domain for the Gellerstedt equation with a singular coefficient

U. M. Mirsaburova

Termez State University, 43 Barkamol avlod str., Termez, 190111 Republic of Uzbekistan

Abstract: In an unbounded domain, for the Gellerstedt equation with a singular coefficient, uniqueness and existence theorems for the solution of a problem with displacement condition on the internal characteristics and a condition like the Frankl condition on the degeneration segment of the equation are proved.

Keywords: unbounded domain, displacement conditions on internal characteristics, Tricomi singular integral equation with displacement in the "nonsingular", part of the kernel, non-Fredholm operator in the non-characteristic part of the equation, Wiener-Hopf equation, residue, index.

UDC: 517.956

Received: 01.10.2021
Revised: 16.11.2021
Accepted: 23.12.2021

DOI: 10.26907/0021-3446-2022-9-70-82


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2022, 66:9, 58–70


© Steklov Math. Inst. of RAS, 2026