RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2020 Number 10, Pages 73–85 (Mi ivm9620)

This article is cited in 9 papers

Integration of mKdV equation with a self-consistent source in the class of finite density functions in the case of moving eigenvalues

K. A. Mamedov

Urgench branch of Tashkent University of Information Technologies named after Muhammad al-Kwarizmi, 110 al-Kwarizmi str., Urgench, 220100 Republic of Uzbekistan

Abstract: In this paper, the possibility of using the inverse scattering problem method to integrate the mKdV equation with a self-consistent source in the class of finite density functions in the case of moving simple eigenvalues of the corresponding spectral problem is shown.

Keywords: inverse scattering problem method, modified Korteweg-de Vries equation (mKdV), Dirac operator, Jost solution, eigenvalue, eigenfunction, scattering data, class of functions having finite density.

UDC: 517.957

Received: 23.11.2019
Revised: 23.11.2019
Accepted: 25.03.2020

DOI: 10.26907/0021-3446-2020-10-73-85


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2020, 64:10, 66–78

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026