RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2020 Number 8, Pages 11–17 (Mi ivm9599)

This article is cited in 1 paper

On the maximum principle for solutions of second order elliptic equations

A. B. Zaitsev

Russian Technological University MIREA, 78 Vernadsky Ave., Moscow, 119454, Russia

Abstract: In this paper the sufficient conditions, under which the maximum princirle for the solution of second order partial differential elliptic equation in the unit circle meets maximum princirle are researched. It is proved that if a quasiconformality coefficient of such function satisfies certain boundary conditions then this function meets maximum principle. Proving the main result we use integral representations of solutions of this equation and properties of Cauchy type integral and functions of Hardy and Smirnoff classes.

Keywords: elliptic equation, maximum principle, quasiconformality coefficient.

UDC: 517.5

Received: 05.09.2019
Revised: 05.09.2019
Accepted: 18.12.2019

DOI: 10.26907/0021-3446-2020-8-11-17


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2020, 64:8, 8–13

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026