Izv. Vyssh. Uchebn. Zaved. Mat., 2019 Number 10, Pages 38–45
(Mi ivm9505)
The triangle equality in Hilbert $A$ -modules
A. V. Kalinichenko a ,
M. A. Pliev b a North-Caucasian Institute of Mining and Metallurgy (State Technological University), 44 Nikolaeva str., Vladikavkaz, 362021 Russia
b Southern Mathematical Institute of the Russian Academy of Sciences, 22 Markusa str., Vladikavkaz, 362027 Russia
Abstract:
We show that for any two elements
$x$ ,
$y$ of Hilbert
$A$ -module
$M$ over local
$C^*$ -algebra
$A$ the
generalized triangle equality
$|x+y|=|x|+|y|$ holds if and only if
$\langle x,y\rangle=|x||y|$ .
Keywords:
local $C^{\ast}$ -algebra, Hilbert $A$ -module, local Hilbert space, module compact operator, $\ast$ -homomorphism, triangle equality.
UDC:
517.98: 519.46
Received: 29.08.2018
Revised: 29.08.2018
Accepted: 19.12.2018
DOI:
10.26907/0021-3446-2019-10-38-45
© , 2026