RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2019 Number 9, Pages 37–49 (Mi ivm9497)

This article is cited in 1 paper

On the Aizerman problem for the scalar differential equations

B. S. Kalitin

Belorussian State University, 4 Nezavisimosti Ave., Minsk, 220030 Republic of Belarus

Abstract: We deal with the problem of stability of the equilibrium of a $n$-th order scalar differential equation. A positive solution is obtained for the Aizerman problem for equations of a special type. We have proved that the parameter of the real part of root of the characteristic equation can be replaced by an arbitrary continuous function depending on all phase variables while preserving the properties of global asymptotic stability.

Keywords: scalar differential equation, equilibrium, stability, Lyapunov functions.

UDC: 517.925

Received: 24.07.2018
Revised: 19.12.2018
Accepted: 19.12.2018

DOI: 10.26907/0021-3446-2019-9-37-49


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2019, 63:9, 31–42

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026