RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2019 Number 6, Pages 89–92 (Mi ivm9477)

Brief communications

Almost periodic solutions of nonlinear ODE systems with two small parameters

N. A. Pismennyy

Voronezh State University, 1 Universitetskaya pl., Voronezh, 394018, Russia

Abstract: We deal with the problem of the existence and uniqueness of almost periodic solutions of a nonlinear ODE system with two small parameters. We prove the bifurcation theorem of almost periodic solutions for a nonlinear system of differential equations with two small positive parameters and an almost periodic right-hand side from the cycle of the generating system. The averaging principal in the problem of almost periodic solutions of a system of special type differential equations with two small parameters is proved.

Keywords: almost periodic solutions, small parameters, nonlinear system, bifurcation.

UDC: 517.911

Received: 24.12.2018
Revised: 24.12.2018
Accepted: 27.03.2019

DOI: 10.26907/0021-3446-2019-6-89-92


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2019, 63:6, 82–84

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026